Additive Manufacturing of Corrosion Resistant UHTC Materials for Chloride Saltto-sCO₂ Brayton Cycle Heat Exchangers

DOE Summit on Gen3 Concentrating Solar Power Technologies

<u>James Kelly (kelly70@llnl.gov)</u>, ¹ Jeff Haslam, ¹ Lauren Finkenauer, ¹ Pratanu Roy, ¹ Joshuah Stolaroff, ¹ Du Nguyen, ¹ Michael Ross, ¹ Andrew Hoff, ¹ Stephen Raiman, ^{2,3} Dino Sulejmanovic, ² Bruce Pint ² Lawrence Livermore National Lab, ²Oak Ridge National Lab, ³Texas A&M

Acknowledgements: ExOne, KLH Industries, Exothermics, LLNL Staff (too many people to list here)

Advanced Designs, Materials, and Manufacturing

Heat Exchanger Design

- Triply periodic minimal surfaces
- Graded structures

Materials

- Ultra-high temperature ceramic materials
- Analytical screening and molten salt corrosion testing

Manufacturing

- Binder-jet additive manufacturing
- Sintering development

Triply Periodic Minimal Surface (TPMS)

- Minimal surfaces mathematical functions with locally minimized area or zero mean curvature
- TPMS special minimal surfaces with two interpenetrating volume domains extending in 3D
- Femmer et. al. (2015) reported on TPMS heat exchanger prototypes with enhanced performance

Calculations for one HX design suggests a power density of 20-50 MW/m³ (200-1000 MW/kg)

Graded TPMS Structures

Additive manufacturing is suited to low-volume, specialty, complex products

Ultra-High-Temperature Ceramic (UHTC) Materials

Thermal management concepts and molten salt synthesis suggest potential as CSP Hx

Analytical Screening and Molten Salt Corrosion Testing

Analytical Screening

- •36 materials evaluated (Group 4-6 borides, carbides, nitrides, silicides)
- Down selected 9 materials based on a FOM that accounts for thermodynamic, processing, property, and cost factors

Ni Crucible Testing

- 9 materials tested in purified KCI-MgCl₂ at 800°C for 100 hours
- Down selected to 3 materials
- Tested in purified salt spiked with H₂O

Mo Capsule Testing

 Repeat tests in sealed Mo capsules using wellestablished ORNL protocols established over decades of corrosion science experience

No visible attack compared to bulk

Significant attack compared to bulk

Molten salt corrosion resistance of WC and Mo₂C stand out from many materials

Binder-Jet Additive Manufacturing

Raw materials for null candidate

- Evaluated 20 grades of ZrB₂ from 14 suppliers
- from 14 suppliers
 Selected 3 ZrB₂ grades

and 19 grades of MoSi₂

Selected 3 MoSi₂ grades

Raw materials evaluations and blending

- Evaluated particle morphology, PSD, and powder rheology
- Down selected to 1 ZrB₂ grade
- Down selected to 1 MoSi₂ grade

Printing trials

- Binder compatibility tests
- Developed basic print parameters
- Printed sintering pucks
- Printed TPMS cells with 2, 3, and 4 mm wall thickness

Using conventional powders and sizes required custom mods, 31-39% green density

Sintering Development

Obtaining closed porosity and uniform shrinkage demonstrates basic manufacturing feasibility

Thank you! Questions?

